A modified subgradient extragradient method for solving monotone variational inequalities
نویسندگان
چکیده
منابع مشابه
A modified subgradient extragradient method for solving monotone variational inequalities
In the setting of Hilbert space, a modified subgradient extragradient method is proposed for solving Lipschitz-continuous and monotone variational inequalities defined on a level set of a convex function. Our iterative process is relaxed and self-adaptive, that is, in each iteration, calculating two metric projections onto some half-spaces containing the domain is involved only and the step siz...
متن کاملThe Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space
We present a subgradient extragradient method for solving variational inequalities in Hilbert space. In addition, we propose a modified version of our algorithm that finds a solution of a variational inequality which is also a fixed point of a given nonexpansive mapping. We establish weak convergence theorems for both algorithms.
متن کاملStrong Convergence of the Halpern Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Spaces
In this paper, we combine the subgradient extragradient method with the Halpern method for finding a solution of a variational inequality involving a monotone Lipschitz mapping in Banach spaces. By using the generalized projection operator and the Lyapunov functional introduced by Alber, we prove a strong convergence theorem. We also consider the problem of finding a common element of the set o...
متن کاملA new modified approximate proximal-extragradient type method for monotone variational inequalities
In this paper, we propose a new approximate proximal point algorithm (APPA). The proposed method uses a new searching direction which differs from the other existing APPAs. Under some mild conditions, we show that the proposed method is globally convergent. The results presented in this paper extend and improve some well-known results in the literature.
متن کاملModified Noor’s Extragradient Method for Solving Generalized Variational Inequalities in Banach Spaces
and Applied Analysis 3 2. Preliminaries Let C be a nonempty closed convex subset of a real Banach space E. Recall that a mapping A of C into E is said to be accretive if there exists j x − y ∈ J x − y such that 〈 Ax −Ay, j(x − y)〉 ≥ 0, 2.1 for all x, y ∈ C. A mapping A of C into E is said to be α-strongly accretive if, for α > 0, 〈 Ax −Ay, j(x − y)〉 ≥ α∥∥x − y∥∥2, 2.2 for all x, y ∈ C. A mappin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2017
ISSN: 1029-242X
DOI: 10.1186/s13660-017-1366-3